Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33495244

RESUMO

Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and IPSCs in CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO's clinical use to balance GABAergic dysfunction.


Assuntos
Eritropoetina , Parvalbuminas , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Parvalbuminas/metabolismo
2.
Respir Physiol Neurobiol ; 267: 12-19, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31154093

RESUMO

Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Eritropoetina/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Receptores da Eritropoetina/biossíntese , Mecânica Respiratória/fisiologia , Animais , Animais Recém-Nascidos , Eritropoetina/genética , Humanos , Camundongos , Ventilação Pulmonar/fisiologia , Receptores da Eritropoetina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...